The role of data-driven priors in multi-agent crowd trajectory estimation

Gang Qiao, Sejong Yoon, Mubbasir Kapadia, Vladimir Pavlovic

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Trajectory interpolation, the process of filling-in the gaps and removing noise from observed agent trajectories, is an essential task for the motion inference in a multi-agent setting. A desired trajectory interpolation method should be robust to noise, changes in environments or agent densities, while also being able to yield realistic group movement behaviors. Such realistic behaviors are, however, challenging to model as they require avoidance of agent-agent or agent-environment collisions and, at the same time, demand computational efficiency. In this paper, we propose a novel framework composed of data-driven priors (local, global or combined) and an efficient optimization strategy for multi-agent trajectory interpolation. The data-driven priors implicitly encode the dependencies of movements of multiple agents and the collision-avoiding desiderata, enabling elimination of costly pairwise collision constraints, resulting in reduced computational complexity and often improved estimation. Various combinations of priors and optimization algorithms are evaluated in comprehensive simulated experiments. Our experimental results reveal important insights, including the significance of the global flow prior and the lesser-than-expected influence of data-driven collision priors.

Original languageAmerican English
Title of host publication32nd AAAI Conference on Artificial Intelligence, AAAI 2018
PublisherAAAI press
Pages4710-4717
Number of pages8
ISBN (Electronic)9781577358008
StatePublished - 2018
Event32nd AAAI Conference on Artificial Intelligence, AAAI 2018 - New Orleans, United States
Duration: Feb 2 2018Feb 7 2018

Publication series

Name32nd AAAI Conference on Artificial Intelligence, AAAI 2018

Conference

Conference32nd AAAI Conference on Artificial Intelligence, AAAI 2018
Country/TerritoryUnited States
CityNew Orleans
Period2/2/182/7/18

ASJC Scopus subject areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'The role of data-driven priors in multi-agent crowd trajectory estimation'. Together they form a unique fingerprint.

Cite this