Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders

Po Lun Kung, Tsui Wen Chou, Marissa Lindman, Nydia P. Chang, Irving Estevez, Benjamin D. Buckley, Colm Atkins, Brian P. Daniels

Research output: Contribution to journalArticlepeer-review

Abstract

Background: Zika virus (ZIKV) is an emerging flavivirus of global concern. ZIKV infection of the central nervous system has been linked to a variety of clinical syndromes, including microcephaly in fetuses and rare but serious neurologic disease in adults. However, the potential for ZIKV to influence brain physiology and host behavior following apparently mild or subclinical infection is less well understood. Furthermore, though deficits in cognitive function are well-documented after recovery from neuroinvasive viral infection, the potential impact of ZIKV on other host behavioral domains has not been thoroughly explored. Methods: We used transcriptomic profiling, including unbiased gene ontology enrichment analysis, to assess the impact of ZIKV infection on gene expression in primary cortical neuron cultures. These studies were extended with molecular biological analysis of gene expression and inflammatory cytokine signaling. In vitro observations were further confirmed using established in vivo models of ZIKV infection in immunocompetent hosts. Results: Transcriptomic profiling of primary neuron cultures following ZIKV infection revealed altered expression of key genes associated with major psychiatric disorders, such as bipolar disorder and schizophrenia. Gene ontology enrichment analysis also revealed significant changes in gene expression associated with fundamental neurobiological processes, including neuronal development, neurotransmission, and others. These alterations to neurologic gene expression were also observed in the brain in vivo using several immunocompetent mouse models of ZIKV infection. Mechanistic studies identified TNF-α signaling via TNFR1 as a major regulatory mechanism controlling ZIKV-induced changes to neurologic gene expression. Conclusions: Our studies reveal that cell-intrinsic innate immune responses to ZIKV infection profoundly shape neuronal transcriptional profiles, highlighting the need to further explore associations between ZIKV infection and disordered host behavioral states.

Original languageAmerican English
Article number100
JournalJournal of Neuroinflammation
Volume19
Issue number1
DOIs
StatePublished - Dec 2022

ASJC Scopus subject areas

  • General Neuroscience
  • Immunology
  • Neurology
  • Cellular and Molecular Neuroscience

Fingerprint

Dive into the research topics of 'Zika virus-induced TNF-α signaling dysregulates expression of neurologic genes associated with psychiatric disorders'. Together they form a unique fingerprint.

Cite this